A ternary Fe₁₋ₓS@Porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries

Smart construction of ultraflexible electrodes with superior gravimetric and volumetric capacities is still challenging yet significant for sodium ion batteries (SIBs) toward wearable electronic devices. Herein, a hybrid film made of hierarchical Fe₁₋ₓS-filled porous carbon nanowires/reduced graphen...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Yang, Fang, Yongjin, Zhao, Zhiwei, Yuan, Changzhou, Lou, David Xiong Wen
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/150961
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Smart construction of ultraflexible electrodes with superior gravimetric and volumetric capacities is still challenging yet significant for sodium ion batteries (SIBs) toward wearable electronic devices. Herein, a hybrid film made of hierarchical Fe₁₋ₓS-filled porous carbon nanowires/reduced graphene oxide (Fe₁₋ₓS@PCNWs/rGO) is synthesized through a facile assembly and sulfuration strategy. The resultant hybrid paper exhibits high flexibility and structural stability. The multidimensional paper architecture possesses several advantages, including rendering an efficient electron/ion transport network, buffering the volume expansion of Fe₁₋ₓS nanoparticles, mitigating the dissolution of polysulfides, and enabling superior kinetics toward efficient sodium storage. When evaluated as a self-supporting anode for SIBs, the Fe₁₋ₓS@PCNWs/rGO paper electrode exhibits remarkable reversible capacities of 573–89 mAh g⁻¹ over 100 consecutive cycles at 0.1 A g⁻¹ with areal mass loadings of 0.9–11.2 mg cm⁻² and high volumetric capacities of 424–180 mAh cm⁻³ in the current density range of 0.2–5 A g⁻¹. More competitively, a SIB based on this flexible Fe₁₋ₓS@PCNWs/rGO anode demonstrates outstanding electrochemical properties, thus highlighting its enormous potential in versatile flexible and wearable applications.