Sunlight activated film forming adhesive polymers

Stimuli-sensitive biomaterials that are activated by light are in need of formulations that are stable under indoor lighting yet can be activated under direct sunlight. Carbene-based bioadhesives are a new generation of film-forming polymers that are stable under indoor lighting yet are rapidly acti...

Full description

Saved in:
Bibliographic Details
Main Authors: Tan, Nigel Chew Shun, Djordjevic, Ivan, Malley, Jamie Ann, Kwang, Ailyn L. Q., Syed, Ikhwan, Šolić, Ivan, Singh, Juhi, Wicaksono, Gautama, Lim, Sierin, Steele, Terry W. J.
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/151332
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Stimuli-sensitive biomaterials that are activated by light are in need of formulations that are stable under indoor lighting yet can be activated under direct sunlight. Carbene-based bioadhesives are a new generation of film-forming polymers that are stable under indoor lighting yet are rapidly activated with low-energy UVA light, but have never been evaluated under sunlight exposure. Previous investigations have evolved two flexible carbene-based platforms, where aryl-diazirine is grafted on to polyamidoamine dendrimers (PAMAM-NH2; generation-5) or hydrophobic liquid polycaprolactone tetrol to yield G5-Dzx and CaproGlu, respectively. For the first time the activation of G5-Dzx and CaproGlu is investigated by natural sunlight with intensities up to 10 mW.cm-2. Structure-property relationships of bioadhesion are investigated by: (1) joules dose of sunlight (2) bioadhesive polymer structure; and (3) optical concentrators of magnifying glass and Fresnel lens. Using only natural sunlight, adhesion strength could be tuned from 20-150 kPa with crosslinking achieved in under 1 min. The results show that carbene-based polymers are a class of stimuli-sensitive biomaterials that are stable to indoor lighting, yet can be rapidly activated under direct sunlight, which may be useful for topical film forming polymers or as active ingredients in sunscreen formulation.