Design and synthesis of improved reversible circuits using AIG- and MIG-based graph data structures
Reversible logic synthesis is one of the best suited ways which act as the intermediate step for synthesising Boolean functions on quantum technologies. For a given Boolean function, there are multiple possible intermediate representations (IRs), based on functional abstraction, e.g. truth table, de...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/151938 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-151938 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1519382021-07-19T11:15:22Z Design and synthesis of improved reversible circuits using AIG- and MIG-based graph data structures Bandyopadhyay, Chandan Das, Rakesh Chattopadhyay, Anupam Rahaman, Hafizur School of Computer Science and Engineering Engineering::Computer science and engineering Data Structures Graph Theory Reversible logic synthesis is one of the best suited ways which act as the intermediate step for synthesising Boolean functions on quantum technologies. For a given Boolean function, there are multiple possible intermediate representations (IRs), based on functional abstraction, e.g. truth table, decision diagrams or circuit abstraction, e.g. binary decision diagram (BDD), and-inverter graph (AIG) and majority inverter graph (MIG). These IRs play an important role in building circuits as the choice of an IR directly impacts on cost parameters of the design. In the authors' work, they are analysing the effects of different graphbased IRs (BDD, AIG and MIG) and their usability in making efficient circuit realisations. Although applications of BDDs as an IR to represent large functions has already been studied, here they are demonstrating a synthesis scheme by taking AIG and MIG as IRs and making a comprehensive comparative analysis over all these three graph-based IRs. In experimental evaluation, it is being observed that for small functions BDD gives more compact circuits than the other two IRs but when the input size increases, then MIG as IR makes substantial improvements in cost parameters as compared with BDD by reducing quantum cost by 39% on an average. Along with the experimental results, a detailed analysis over the different IRs is also included to find their easiness in designing circuits. 2021-07-19T11:15:22Z 2021-07-19T11:15:22Z 2019 Journal Article Bandyopadhyay, C., Das, R., Chattopadhyay, A. & Rahaman, H. (2019). Design and synthesis of improved reversible circuits using AIG- and MIG-based graph data structures. IET Computers and Digital Techniques, 13(1), 38-48. https://dx.doi.org/10.1049/iet-cdt.2017.0097 1751-8601 https://hdl.handle.net/10356/151938 10.1049/iet-cdt.2017.0097 2-s2.0-85060135798 1 13 38 48 en IET Computers and Digital Techniques © 2018 The Institution of Engineering and Technology. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering Data Structures Graph Theory |
spellingShingle |
Engineering::Computer science and engineering Data Structures Graph Theory Bandyopadhyay, Chandan Das, Rakesh Chattopadhyay, Anupam Rahaman, Hafizur Design and synthesis of improved reversible circuits using AIG- and MIG-based graph data structures |
description |
Reversible logic synthesis is one of the best suited ways which act as the intermediate step for synthesising Boolean functions on quantum technologies. For a given Boolean function, there are multiple possible intermediate representations (IRs), based on functional abstraction, e.g. truth table, decision diagrams or circuit abstraction, e.g. binary decision diagram (BDD), and-inverter graph (AIG) and majority inverter graph (MIG). These IRs play an important role in building circuits as the choice of an IR directly impacts on cost parameters of the design. In the authors' work, they are analysing the effects of different graphbased IRs (BDD, AIG and MIG) and their usability in making efficient circuit realisations. Although applications of BDDs as an IR to represent large functions has already been studied, here they are demonstrating a synthesis scheme by taking AIG and MIG as IRs and making a comprehensive comparative analysis over all these three graph-based IRs. In experimental evaluation, it is being observed that for small functions BDD gives more compact circuits than the other two IRs but when the input size increases, then MIG as IR makes substantial improvements in cost parameters as compared with BDD by reducing quantum cost by 39% on an average. Along with the experimental results, a detailed analysis over the different IRs is also included to find their easiness in designing circuits. |
author2 |
School of Computer Science and Engineering |
author_facet |
School of Computer Science and Engineering Bandyopadhyay, Chandan Das, Rakesh Chattopadhyay, Anupam Rahaman, Hafizur |
format |
Article |
author |
Bandyopadhyay, Chandan Das, Rakesh Chattopadhyay, Anupam Rahaman, Hafizur |
author_sort |
Bandyopadhyay, Chandan |
title |
Design and synthesis of improved reversible circuits using AIG- and MIG-based graph data structures |
title_short |
Design and synthesis of improved reversible circuits using AIG- and MIG-based graph data structures |
title_full |
Design and synthesis of improved reversible circuits using AIG- and MIG-based graph data structures |
title_fullStr |
Design and synthesis of improved reversible circuits using AIG- and MIG-based graph data structures |
title_full_unstemmed |
Design and synthesis of improved reversible circuits using AIG- and MIG-based graph data structures |
title_sort |
design and synthesis of improved reversible circuits using aig- and mig-based graph data structures |
publishDate |
2021 |
url |
https://hdl.handle.net/10356/151938 |
_version_ |
1707050432921075712 |