An energy-efficient convolution unit for depthwise separable convolutional neural networks

High performance but computationally expensive Convolutional Neural Networks (CNNs) require both algorithmic and custom hardware improvement to reduce model size and to improve energy efficiency for edge computing applications. Recent CNN architectures employ depthwise separable convolution to reduc...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Chong, Yi Sheng, Goh, Wang Ling, Ong, Yew-Soon, Nambiar, Vishnu P., Do, Anh Tuan
مؤلفون آخرون: Interdisciplinary Graduate School (IGS)
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/152096
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:High performance but computationally expensive Convolutional Neural Networks (CNNs) require both algorithmic and custom hardware improvement to reduce model size and to improve energy efficiency for edge computing applications. Recent CNN architectures employ depthwise separable convolution to reduce the total number of weights and MAC operations. However, depthwise separable convolution workload does not run efficiently in existing CNN accelerators. This paper proposes an energy-efficient CONV unit for pointwise and depthwise operation. The CONV unit utilizes weight stationary to enable high efficiency. The row partial sum reduction is engaged to increase parallelism in pointwise convolution thereby lightening the memory requirements on output partial sums. Our design achieves a maximum efficiency of 3.17 TOPS/W at 0.85V/40nm CMOS which is well-suited for energy constrained edge computing applications.