An energy-efficient convolution unit for depthwise separable convolutional neural networks
High performance but computationally expensive Convolutional Neural Networks (CNNs) require both algorithmic and custom hardware improvement to reduce model size and to improve energy efficiency for edge computing applications. Recent CNN architectures employ depthwise separable convolution to reduc...
Saved in:
Main Authors: | Chong, Yi Sheng, Goh, Wang Ling, Ong, Yew-Soon, Nambiar, Vishnu P., Do, Anh Tuan |
---|---|
其他作者: | Interdisciplinary Graduate School (IGS) |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/152096 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Learning temporal information for brain-computer interface using convolutional neural networks
由: Sakhavi, Siavash, et al.
出版: (2018) -
Spoofing speech detection using temporal convolutional neural network
由: Xiao, Xiong, et al.
出版: (2018) -
Computer graphics identification combining convolutional and recurrent neural networks
由: He, Peisong, et al.
出版: (2020) -
Synergistic 2D/3D Convolutional Neural Network for hyperspectral image classification
由: Yang, Xiaofei, et al.
出版: (2021) -
Cross-layer features in convolutional neural networks for generic classification tasks
由: Peng K.-C., et al.
出版: (2018)