Multi-objective optimization of the kinematic parameters of fish-like swimming using a genetic algorithm method
This paper investigates the kinematic optimization of fish-like swimming. First, an experiment was performed to detect the motion of the fish tail foil of a fish robot. Next, the kinematic swimming model was verified experimentally using an image processing method. The model includes two rotational...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/152193 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This paper investigates the kinematic optimization of fish-like swimming. First, an experiment was performed to detect the motion of the fish tail foil of a fish robot. Next, the kinematic swimming model was verified experimentally using an image processing method. The model includes two rotational motions: caudal foil motion and foil-pitching motion. The kinematic model allows us to evaluate the influence of motion trajectory in the optimization process. To optimize the propulsive efficiency and thrust, a multi-objective genetic algorithm was employed to handle with kinematic, hydrodynamic, and propulsion models. The results show that the caudal length has a significant effect on the performance of the flapping foil in fish-like swimming, and its influence on the motion trajectory may increase the propulsive efficiency to as high as 98% in ideal conditions. The maximum thrust coefficient can also reach approximately 3 in ideal conditions. |
---|