Investigation and modeling of flight technical error (FTE) associated with UAS operating with and without pilot guidance
With the increasing interest in the utilization of urban airspace for unmanned aerial system (UAS) operations, be it for cargo delivery or passenger transportation, the future city sky could become quite a crowded place if all those visions become reality. In such case, the question of how close two...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/152772 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | With the increasing interest in the utilization of urban airspace for unmanned aerial system (UAS) operations, be it for cargo delivery or passenger transportation, the future city sky could become quite a crowded place if all those visions become reality. In such case, the question of how close two
operations could be conducted while sharing an airspace must be answered to ensure the safe and efficient use of the urban airspace. The lateral separation needed to prevent inadvertent intrusion by neighboring tracks is especially important when designing airspace corridors constrained by the urban landscape. This paper documents a series of flight tests conducted in open fields with the goal of assessing the along-track (longitudinal), cross-track (lateral),and altitude (height) deviation under two
different flight conditions: operator guided operation within Visual Line of Sight (VLoS), and the waypoint-guided mission analogous to operating Beyond Visual Line of Sight (BVLoS). The flight test statistics were also compared to the Monte-Carlo based path prediction model that was used in earlier studies for
collision prediction. The goal is to determine the Flight Technical Error (FTE) that forms a part of the Total System Error (TSE) for Performance Based Navigation (PBN) of UAS to support the establishment of separation requirements in urban airspace. |
---|