Federated graph neural network
Graph Neural Networks is a form of machine learning that has seen significant growth in popularity and use, owing to their natural affinity for capturing implicit representations that exist in real-world phenomena. Many of these real-world phenomena involve people-centric data, which are privacy-sen...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/153240 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Graph Neural Networks is a form of machine learning that has seen significant growth in popularity and use, owing to their natural affinity for capturing implicit representations that exist in real-world phenomena. Many of these real-world phenomena involve people-centric data, which are privacy-sensitive. Because of this, there are growing privacy concerns pertaining to the use of machine learning for privacy-sensitive data, resulting in regulations that discourage or even prevent centralized collection of people-centric data. In this project, we implement and introduce a possible alternative means of conducting Graph Neural Network machine learning on privacy-sensitive data by combining a form of de-centralized, privacy-preserving machine learning known as Federated Learning with Graph Neural Networks. Our approach is showcased through the augmentation of the GCN and GraphSAGE GNNs with FL. These augmented FL-GNN models are able perform privacy-preserving de-centralized learning through a server-client architecture that does not require the collection of user data to train a Graph Neural Network model. |
---|