Initialization matters : regularizing manifold-informed initialization for neural recommendation systems
Proper initialization is crucial to the optimization and the generalization of neural networks. However, most existing neural recommendation systems initialize the user and item embeddings randomly. In this work, we propose a new initialization scheme for user and item embeddings called Laplacian E...
Saved in:
Main Authors: | Zhang, Yinan, Li, Boyang, Liu, Yong, Wang, Hao, Miao, Chunyan |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/153528 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Learning personalized itemset mapping for cross-domain recommendation
由: Zhang, Yinan, et al.
出版: (2021) -
Diversified interactive recommendation with implicit feedback
由: Liu, Yong, et al.
出版: (2020) -
Learning hierarchical review graph representations for recommendation
由: Liu, Yong, et al.
出版: (2022) -
Memory bank augmented long-tail sequential recommendation
由: Hu, Yidan, et al.
出版: (2023) -
Contextualized graph attention network for recommendation with item knowledge graph
由: Liu, Yong, et al.
出版: (2022)