Towards robust inference against distribution shifts in computer vision
After a decade of prosperity, the development of machine learning based on deep neural networks (DNNs) seems to reach a new turning point. A variety of tasks and fields have proved that recklessly feeding a massive volume of data and increasing the model capacity would no longer bring us a panacea f...
Saved in:
主要作者: | Tang, Kaihua |
---|---|
其他作者: | Zhang Hanwang |
格式: | Thesis-Doctor of Philosophy |
語言: | English |
出版: |
Nanyang Technological University
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/154119 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Toward a generic federated learning platform optimized for computer vision applications
由: Zhuang, Weiming
出版: (2023) -
Exploring Text-Guided Synthetic Distribution Shifts for Robust Image Classification
由: Ramos, Ryan, et al.
出版: (2023) -
Computer vision for business intelligence
由: Lim, Chadd Zhe Xian
出版: (2020) -
Transformers for computer vision
由: Deng, Yaojun
出版: (2022) -
Towards robust deep learning models against corruptions
由: Yi, Chenyu
出版: (2024)