Fatty acid oxidation is a druggable gateway regulating cellular plasticity for driving metastasis in breast cancer

Cell state transitions control the functional behavior of cancer cells. Epithelial-to-mesenchymal transition (EMT) confers cancer stem cell-like properties, enhanced tumorigenicity and drug resistance to tumor cells, while mesenchymal-epithelial transition (MET) reverses these phenotypes. Using high...

Full description

Saved in:
Bibliographic Details
Main Authors: Loo, Ser Yue, Toh, Li Ping, Xie, William Haowei, Pathak, Elina, Tan, Wilson, Ma, Siming, Lee, May Yin, Shatishwaran, S., Yeo, Joanna Zhen Zhen, Yuan, Ju, Ho, Yin Ying, Peh, Esther Kai Lay, Muniandy, Magendran, Torta, Federico, Chan, Jack, Tan, Tira J., Sim, Yirong, Tan, Veronique, Tan, Benita, Madhukumar, Preetha, Yong, Wei Sean, Ong, Kong Wee, Wong, Chow Yin, Tan, Puay Hoon, Yap, Yoon Sim, Deng, Lih-Wen, Dent, Rebecca, Foo, Roger, Wenk, Markus R., Lee, Soo Chin, Ho, Ying Swan, Lim, Elaine Hsuen, Tam, Wai Leong
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/154360
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Cell state transitions control the functional behavior of cancer cells. Epithelial-to-mesenchymal transition (EMT) confers cancer stem cell-like properties, enhanced tumorigenicity and drug resistance to tumor cells, while mesenchymal-epithelial transition (MET) reverses these phenotypes. Using high-throughput chemical library screens, retinoids are found to be potent promoters of MET that inhibit tumorigenicity in basal-like breast cancer. Cell state transitions are defined by reprogramming of lipid metabolism. Retinoids bind cognate nuclear receptors, which target lipid metabolism genes, thereby redirecting fatty acids for β-oxidation in the mesenchymal cell state towards lipid storage in the epithelial cell state. Disruptions of key metabolic enzymes mediating this flux inhibit MET. Conversely, perturbations to fatty acid oxidation (FAO) rechannel fatty acid flux and promote a more epithelial cell phenotype, blocking EMT-driven breast cancer metastasis in animal models. FAO impinges on the epigenetic control of EMT through acetyl-CoA-dependent regulation of histone acetylation on EMT genes, thus determining cell states.