RNA alternative splicing prediction with discrete compositional energy network

A single gene can encode for different protein versions through a process called alternative splicing. Since proteins play major roles in cellular functions, aberrant splicing profiles can result in a variety of diseases, including cancers. Alternative splicing is determined by the gene's prima...

Full description

Saved in:
Bibliographic Details
Main Authors: Chan, Alvin, Korsakova, Anna, Ong, Yew-Soon, Winnerdy, Fernaldo Richtia, Lim, Kah Wai, Phan, Anh Tuan
Other Authors: School of Physical and Mathematical Sciences
Format: Conference or Workshop Item
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/155091
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:A single gene can encode for different protein versions through a process called alternative splicing. Since proteins play major roles in cellular functions, aberrant splicing profiles can result in a variety of diseases, including cancers. Alternative splicing is determined by the gene's primary sequence and other regulatory factors such as RNA-binding protein levels. With these as input, we formulate the prediction of RNA splicing as a regression task and build a new training dataset (CAPD) to benchmark learned models. We propose discrete compositional energy network (DCEN) which leverages the hierarchical relationships between splice sites, junctions and transcripts to approach this task. In the case of alternative splicing prediction, DCEN models mRNA transcript probabilities through its constituent splice junctions' energy values. These transcript probabilities are subsequently mapped to relative abundance values of key nucleotides and trained with ground-truth experimental measurements. Through our experiments on CAPD1, we show that DCEN outperforms baselines and ablation variants.