Patterning of oncogenic Ras clustering in live cells using vertically aligned nanostructure arrays
As a dominant oncogenic protein, Ras is well-known to segregate into clusters on the plasma membrane for activating downstream signaling. However, current technologies for direct measurements of Ras clustering are limited to sophisticated high-resolution techniques like electron microscopy and fluor...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/155186 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | As a dominant oncogenic protein, Ras is well-known to segregate into clusters on the plasma membrane for activating downstream signaling. However, current technologies for direct measurements of Ras clustering are limited to sophisticated high-resolution techniques like electron microscopy and fluorescence lifetime imaging. To further promote fundamental investigations and the related drug development, we hereby introduce a nanobar-based platform which effectively guides Ras clusters into quantifiable patterns in live cells that is resolvable under conventional microscopy. Major Ras isoforms, K-Ras, H-Ras, and N-Ras were differentiated, as well as their highly prevalent oncogenic mutants G12V and G13D. Moreover, the isoform specificity and the sensitivity of a Ras inhibitor were successfully characterized on nanobars. We envision that this nanobar-based platform will serve as an effective tool to read Ras clustering on the plasma membrane, enabling a novel avenue both to decipher Ras regulations and to facilitate anti-Ras drug development. |
---|