Adversarial training using meta-learning for BERT
Deep learning is currently the most successful method of semantic analysis in natural language processing. However, in recent years, many variants of carefully crafted inputs designed to cause misclassification, known as adversarial attacks, have been engineered with tremendous success. One well-...
محفوظ في:
المؤلف الرئيسي: | Low, Timothy Jing Haen |
---|---|
مؤلفون آخرون: | Joty Shafiq Rayhan |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/156635 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Adversarial robustness of deep reinforcement learning
بواسطة: Qu, Xinghua
منشور في: (2022) -
Investigating the causes of the vulnerability of CNNs to adversarial perturbations: learning objective, model components, and learned representations
بواسطة: Coppola, Davide
منشور في: (2023) -
Adversarial patch detection
بواسطة: Yeong, Joash Ler Yuen
منشور في: (2022) -
Defence on unrestricted adversarial examples
بواسطة: Chan, Jarod Yan Cheng
منشور في: (2021) -
‘The six pac-men' : exploring the strength of advice provision and the impact of an adversarial advisor in reinforcement learning
بواسطة: Arun, Rakshitha
منشور في: (2021)