Unsupervised domain adaptation for depth completion from sparse LiDAR scans depth map
Depth completion aims to predict the distance between objects on an image and the camera capturing the image from a LiDAR scans depth input, and the distance is expressed as a dense depth map. Denser scans depth input leads to better prediction, while the cost of the corresponding LiDAR equipment wi...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Master by Coursework |
Language: | English |
Published: |
Nanyang Technological University
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/156769 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |