Asymptotic improvement of GV bound
The Gilbert-Varshamov (GV) bound is a well-known lower bound in coding theory that claims that for any given code with relative distance $\delta$, there is a lower bound for the rates possible. This paper will asymptotically improve upon by 1.5$\frac{\log n}{n}$ for unconstrained binary systems. We...
Saved in:
主要作者: | Yip, Jose Zheng Ho |
---|---|
其他作者: | Kiah Han Mao |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/156922 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Improved lower bounds on book crossing numbers of complete graphs
由: Salazar, G., et al.
出版: (2014) -
On eigenvalue bounds for the finite-state birth-death process intensity matrix
由: Tan, R.R.P, et al.
出版: (2020) -
Constructions and bounds on linear error-block codes
由: Ling, San, et al.
出版: (2013) -
A sharp exponent bound for McFarland difference sets with p=2
由: Ma, Siu Lun., et al.
出版: (2009) -
Non-asymptotic bounds for modified tamed unadjusted Langevin algorithm in non-convex setting
由: Ng, Matthew Cheng En
出版: (2022)