Sparse supervised principal component analysis for survival models
Survival prediction plays a vital role in biomedical research, but the large number of patient characteristics considered as covariates raises the concern about overfitting leading to poor prediction accuracy. To address this, we propose a sparse supervised PCA method for censored Accelerated Failur...
Saved in:
主要作者: | Poh, Charissa Li Ann |
---|---|
其他作者: | Xiang Liming |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/156924 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Multi-period principal-agent problems
由: Ooi, Kenneth Wen Rui
出版: (2019) -
Deep-learning in survival analysis
由: Ho, Jeff
出版: (2021) -
On general adaptive sparse principal component analysis
由: Leng, C., et al.
出版: (2014) -
Semiparametric inference for proportional mean residual life models with clustered survival data
由: Huang, Rui
出版: (2020) -
Regression analysis of survival data with covariates subject to censoring
由: Yu, Tonghui
出版: (2018)