Lee-Carter model and Kernel PCA

This thesis investigates the application of Kernel Principal Component Analysis (KPCA) method on the Lee-Carter model, which is a two-step model for estimating and forecasting mortality rates (Lee and Carter, 1992). The motivation comes from the possible non-linearity of mortality data which cannot...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Wu, Yuanqi
مؤلفون آخرون: Pan Guangming
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/156935
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:This thesis investigates the application of Kernel Principal Component Analysis (KPCA) method on the Lee-Carter model, which is a two-step model for estimating and forecasting mortality rates (Lee and Carter, 1992). The motivation comes from the possible non-linearity of mortality data which cannot be captured by the traditional SVD and MLE methods. The proposed KPCA Lee-Carter model maps the mortality data into the feature space using kernel functions. Experiments on various kernels are conducted. The kernel and its corresponding parameters with the lowest forecasting error in k-fold cross validation are selected. The empirical analysis is conducted on U.S. mortality data to evaluate the model performance and simulation study is conducted to prove model correctness.