Goal modelling for deep reinforcement learning agents

Goals provide a high-level abstraction of an agent’s objectives and guide its behavior in complex environments. As agents become more intelligent, it is necessary to ensure that the agent’s goals are aligned with the goals of the agent designers to avoid unexpected or unwanted agent behavior. In thi...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Leung, Jonathan, Shen, Zhiqi, Zeng, Zhiwei, Miao, Chunyan
مؤلفون آخرون: School of Computer Science and Engineering
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/156966
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Goals provide a high-level abstraction of an agent’s objectives and guide its behavior in complex environments. As agents become more intelligent, it is necessary to ensure that the agent’s goals are aligned with the goals of the agent designers to avoid unexpected or unwanted agent behavior. In this work, we propose using Goal Net, a goal-oriented agent modelling methodology, as a way for agent designers to incorporate their prior knowledge regarding the subgoals an agent needs to achieve in order to accomplish an overall goal. This knowledge is used to guide the agent’s learning process to train it to achieve goals in dynamic environments where its goal may change between episodes. We propose a model that integrates a Goal Net model and hierarchical reinforcement learning. A high-level goal selection policy selects goals according to a given Goal Net model and a low-level action selection policy selects actions based on the selected goal, both of which use deep neural networks to enable learning in complex, high-dimensional environments. The experiments demonstrate that our method is more sample efficient and can obtain higher average rewards than other related methods that incorporate prior human knowledge in similar ways.