Radio-frequency (RF) sensing for deep awareness of human physical status

Radio-frequency has been gaining its popularity over the years due to its ability to transmit data remotely. Radar is the product of radio-frequency and is able to detect an object’s distance and velocity. The radar has many potentials such as detecting vital signs which may be implemented in...

Full description

Saved in:
Bibliographic Details
Main Author: Lim, Jun Wei
Other Authors: Luo Jun
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/157024
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-157024
record_format dspace
spelling sg-ntu-dr.10356-1570242022-08-01T07:01:24Z Radio-frequency (RF) sensing for deep awareness of human physical status Lim, Jun Wei Luo Jun School of Computer Science and Engineering junluo@ntu.edu.sg Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence Engineering::Computer science and engineering::Computer applications::Life and medical sciences Radio-frequency has been gaining its popularity over the years due to its ability to transmit data remotely. Radar is the product of radio-frequency and is able to detect an object’s distance and velocity. The radar has many potentials such as detecting vital signs which may be implemented in hospitals for reading patients that are not able to take a reading through traditional means such as burnt patients. Reading vital signs of these patients with radar would help as it does not require the equipment to have any contact with the patient. The purpose of this project is to apply deep learning on raw data that is produced by the current hardware which has the purpose of reading human vital signs through the means of radar. Currently data from this device has reading of interference as well apart from the actual reading. In this project, models with two different purposes are proposed to help identify actual reading from interferences and extract respiration rate from the raw data files that have been produced by the radar. Two models, Convolution Neural Network and Recurrent Neural Network are used in this project to determine which model would produce a better result to achieve the purpose of this project. Different batch sizes along with different dataset and intake size were tested to determine which configuration is best suited for training. Although Recurrent Neural Network is better suited for time series data such as radar data, this is not the case in this project. In the model with the purpose of predicting actual reading from interference, Convolution Neural Network has performed better than Recurrent Neural network which is shown with confusion matrix later in the report. With actual reading being 0.0278% of the whole dataset, Convolution Neural Network was still able to predict 52% of actual reading correctly. In the model with the purpose of predicting the respiration rate from a given bin, Convolution Neural Network has outperformed Recurrent Neural Network with the lowest val loss of 0.738 while Recurrent Neural Network has its lowest val loss at 1.48. Bachelor of Engineering (Computer Science) 2022-05-06T06:21:12Z 2022-05-06T06:21:12Z 2022 Final Year Project (FYP) Lim, J. W. (2022). Radio-frequency (RF) sensing for deep awareness of human physical status. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/157024 https://hdl.handle.net/10356/157024 en application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence
Engineering::Computer science and engineering::Computer applications::Life and medical sciences
spellingShingle Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence
Engineering::Computer science and engineering::Computer applications::Life and medical sciences
Lim, Jun Wei
Radio-frequency (RF) sensing for deep awareness of human physical status
description Radio-frequency has been gaining its popularity over the years due to its ability to transmit data remotely. Radar is the product of radio-frequency and is able to detect an object’s distance and velocity. The radar has many potentials such as detecting vital signs which may be implemented in hospitals for reading patients that are not able to take a reading through traditional means such as burnt patients. Reading vital signs of these patients with radar would help as it does not require the equipment to have any contact with the patient. The purpose of this project is to apply deep learning on raw data that is produced by the current hardware which has the purpose of reading human vital signs through the means of radar. Currently data from this device has reading of interference as well apart from the actual reading. In this project, models with two different purposes are proposed to help identify actual reading from interferences and extract respiration rate from the raw data files that have been produced by the radar. Two models, Convolution Neural Network and Recurrent Neural Network are used in this project to determine which model would produce a better result to achieve the purpose of this project. Different batch sizes along with different dataset and intake size were tested to determine which configuration is best suited for training. Although Recurrent Neural Network is better suited for time series data such as radar data, this is not the case in this project. In the model with the purpose of predicting actual reading from interference, Convolution Neural Network has performed better than Recurrent Neural network which is shown with confusion matrix later in the report. With actual reading being 0.0278% of the whole dataset, Convolution Neural Network was still able to predict 52% of actual reading correctly. In the model with the purpose of predicting the respiration rate from a given bin, Convolution Neural Network has outperformed Recurrent Neural Network with the lowest val loss of 0.738 while Recurrent Neural Network has its lowest val loss at 1.48.
author2 Luo Jun
author_facet Luo Jun
Lim, Jun Wei
format Final Year Project
author Lim, Jun Wei
author_sort Lim, Jun Wei
title Radio-frequency (RF) sensing for deep awareness of human physical status
title_short Radio-frequency (RF) sensing for deep awareness of human physical status
title_full Radio-frequency (RF) sensing for deep awareness of human physical status
title_fullStr Radio-frequency (RF) sensing for deep awareness of human physical status
title_full_unstemmed Radio-frequency (RF) sensing for deep awareness of human physical status
title_sort radio-frequency (rf) sensing for deep awareness of human physical status
publisher Nanyang Technological University
publishDate 2022
url https://hdl.handle.net/10356/157024
_version_ 1743119494791823360