Low–cost visual localization system on an embedded platform

Simultaneous Localization and Mapping (SLAM) of an unknown environment is very crucial in navigation for autonomous robots. The role of SLAM is more critical for indoor navigation as the SLAM system cannot rely on Global Positioning System (GPS). Furthermore, an autonomous robot is typically on...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Sua, Heng Duang
مؤلفون آخرون: Lam Siew Kei
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/157237
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Simultaneous Localization and Mapping (SLAM) of an unknown environment is very crucial in navigation for autonomous robots. The role of SLAM is more critical for indoor navigation as the SLAM system cannot rely on Global Positioning System (GPS). Furthermore, an autonomous robot is typically only equipped with camera sensors and a low-cost embedded system, which poses a challenge in achieving high-speed visual SLAM. The objective of this project is to develop a preliminary Field Programmable Gate Array (FPGA) based sensing and computing stack for visual SLAM. To date, most of the existing visual SLAM algorithms have been implemented on microprocessors and GPUs. This project aims to port a widely used visual-inertial SLAM framework to the processing system (PS) of an FPGA platform and perform calibration of the Inertial Measurement Unit (IMU) and camera sensors to reduce pose estimate uncertainty. This project will lay the foundation for future research in hardware acceleration of visual SLAM algorithm on FPGA