Investigation of printable polymers for flexible electronics

Extensive research on printable electronics is being carried out for its flexibility and potential for high volume production of high-performance lower cost devices. It paves a new way for manufacturing electronics using conductive inks with inkjet, dispensing or screen-printing techniques. To...

Full description

Saved in:
Bibliographic Details
Main Author: Ong, Ming Sheng
Other Authors: Leong Wei Lin
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/157388
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Extensive research on printable electronics is being carried out for its flexibility and potential for high volume production of high-performance lower cost devices. It paves a new way for manufacturing electronics using conductive inks with inkjet, dispensing or screen-printing techniques. To this end, different flexible substrates like polymers, paper, or textiles can be used, resulting in a lightweight and thinly printed component. The objective of this project is to investigate on and optimise new printable electronic materials with the use of ink-jet printing and dispenser-printing to demonstrate the potential in fabricating a fully printed flexible electronic device. It involves the fabrication of organic electrochemical transistor (OECT), which consists of metallic source, drain, and gate electrodes, a polymer channel and an electrolyte layer between the channel and the gate. Each part/layer of the OECT was printed individually for optimisation before a combine print. Despite obtaining some encouraging results during optimisation, they were unattainable subsequently as the inkjet printer experienced nozzle clogging issues, which could be due to solvent agglomeration. Therefore, dispenser-printing technique instead of inkjet-printing was used to fabricate the final OECT device