Wafer-scale deposition of transition metal Dichalcogenide film

In today’s world, two-dimensional (2D) materials have gained huge popularity and interest due to their potential use in a variety of applications, such as electronic, optoelectronic, gas sensing, and energy storage devices. Layered transition-metal dichalcogenides (TMDs) is a key player in 2D materi...

Full description

Saved in:
Bibliographic Details
Main Author: Ang, Nicole Ru Xuan
Other Authors: Tay Beng Kang
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/157973
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-157973
record_format dspace
spelling sg-ntu-dr.10356-1579732023-07-07T19:05:33Z Wafer-scale deposition of transition metal Dichalcogenide film Ang, Nicole Ru Xuan Tay Beng Kang School of Electrical and Electronic Engineering EBKTAY@ntu.edu.sg Engineering::Electrical and electronic engineering::Semiconductors In today’s world, two-dimensional (2D) materials have gained huge popularity and interest due to their potential use in a variety of applications, such as electronic, optoelectronic, gas sensing, and energy storage devices. Layered transition-metal dichalcogenides (TMDs) is a key player in 2D materials research. 2D TMDs possess numerous outstanding material properties such as ultrathin nature, high flexibility, high mechanical strength, unique optoelectronic properties, a layer-dependent adjustable band gap coupled with indirect-to-direct band gap transition present in the monolayers, and intense photoluminescence. They are therefore deemed suitable for implementation in optoelectronics and electronics applications. There is a high motivation for successful TMDs integration into commercial applications, which has in turn created a critical demand for obtaining high-quality, electronic-grade monolayer TMDs with homogenous film continuity on large surfaces. This project focusses on molybdenum disulfide (MoS2), a notable example of 2D TMDs. Monolayer MoS2 possess unique and outstanding properties such as a wide direct bandgap (~1.8 – 1.9 eV), high carrier mobility (~ 200 cm2V-1s-1), and high thermal stability, making it suitable for use in the fabrication of field effect transistors with low static power consumption, high efficiency and high on/off ratios. MoS2 devices can also overcome the short-channel effects faced by silicon (Si) devices in the nanoscale level, making it a possible substitute material for Si. In this project, wafer-scale monolayer MoS2 samples were first be prepared via material deposition with chemical vapor deposition (CVD) synthesis, while varying the deposition parameters. Next, material characterization using techniques such as Raman spectroscopy, photoluminescence (PL) spectroscopy and electrical test were conducted to analyze the structural properties, optical properties, and quality of the MoS2 synthesised. Based on the results, further optimisation of the deposition parameters was carried out to improve the quality of the MoS2 films, and also thereby conclude on the optimal deposition parameters to be used, which is crucial for the implementation of wafer-scale monolayer MoS2 in electronic devices and applications. Keywords: 2D materials, TMDs, MoS2, CVD synthesis, wafer-scale Bachelor of Engineering (Electrical and Electronic Engineering) 2022-05-24T05:23:52Z 2022-05-24T05:23:52Z 2022 Final Year Project (FYP) Ang, N. R. X. (2022). Wafer-scale deposition of transition metal Dichalcogenide film. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/157973 https://hdl.handle.net/10356/157973 en A2219-211 application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Electrical and electronic engineering::Semiconductors
spellingShingle Engineering::Electrical and electronic engineering::Semiconductors
Ang, Nicole Ru Xuan
Wafer-scale deposition of transition metal Dichalcogenide film
description In today’s world, two-dimensional (2D) materials have gained huge popularity and interest due to their potential use in a variety of applications, such as electronic, optoelectronic, gas sensing, and energy storage devices. Layered transition-metal dichalcogenides (TMDs) is a key player in 2D materials research. 2D TMDs possess numerous outstanding material properties such as ultrathin nature, high flexibility, high mechanical strength, unique optoelectronic properties, a layer-dependent adjustable band gap coupled with indirect-to-direct band gap transition present in the monolayers, and intense photoluminescence. They are therefore deemed suitable for implementation in optoelectronics and electronics applications. There is a high motivation for successful TMDs integration into commercial applications, which has in turn created a critical demand for obtaining high-quality, electronic-grade monolayer TMDs with homogenous film continuity on large surfaces. This project focusses on molybdenum disulfide (MoS2), a notable example of 2D TMDs. Monolayer MoS2 possess unique and outstanding properties such as a wide direct bandgap (~1.8 – 1.9 eV), high carrier mobility (~ 200 cm2V-1s-1), and high thermal stability, making it suitable for use in the fabrication of field effect transistors with low static power consumption, high efficiency and high on/off ratios. MoS2 devices can also overcome the short-channel effects faced by silicon (Si) devices in the nanoscale level, making it a possible substitute material for Si. In this project, wafer-scale monolayer MoS2 samples were first be prepared via material deposition with chemical vapor deposition (CVD) synthesis, while varying the deposition parameters. Next, material characterization using techniques such as Raman spectroscopy, photoluminescence (PL) spectroscopy and electrical test were conducted to analyze the structural properties, optical properties, and quality of the MoS2 synthesised. Based on the results, further optimisation of the deposition parameters was carried out to improve the quality of the MoS2 films, and also thereby conclude on the optimal deposition parameters to be used, which is crucial for the implementation of wafer-scale monolayer MoS2 in electronic devices and applications. Keywords: 2D materials, TMDs, MoS2, CVD synthesis, wafer-scale
author2 Tay Beng Kang
author_facet Tay Beng Kang
Ang, Nicole Ru Xuan
format Final Year Project
author Ang, Nicole Ru Xuan
author_sort Ang, Nicole Ru Xuan
title Wafer-scale deposition of transition metal Dichalcogenide film
title_short Wafer-scale deposition of transition metal Dichalcogenide film
title_full Wafer-scale deposition of transition metal Dichalcogenide film
title_fullStr Wafer-scale deposition of transition metal Dichalcogenide film
title_full_unstemmed Wafer-scale deposition of transition metal Dichalcogenide film
title_sort wafer-scale deposition of transition metal dichalcogenide film
publisher Nanyang Technological University
publishDate 2022
url https://hdl.handle.net/10356/157973
_version_ 1772826115565420544