Sufficient control of complex network

This paper serves to further analyze the performance of the suggested algorithm which uses the minimum cost flow problem to control a sufficiently large portion of the network, where only the quantity of controllable nodes matters. Previously, the algorithm has been simulated on complex networks suc...

Full description

Saved in:
Bibliographic Details
Main Author: Geraldo, Nicholas Eric
Other Authors: Xiao Gaoxi
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/158066
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This paper serves to further analyze the performance of the suggested algorithm which uses the minimum cost flow problem to control a sufficiently large portion of the network, where only the quantity of controllable nodes matters. Previously, the algorithm has been simulated on complex networks such as the scale-free Barabási–Albert (BA) network, the random Erdos-Renyi (ER) network, and various real-life networks which resulted in varying performance of the proposed algorithm. This shows that different types of networks with differing structures and growths may affect the performance of the algorithm. Thus, this paper addresses the performance of the minimum cost flow algorithm in networks with different growth to evaluate the effectiveness of the algorithm. Furthermore, we analyzed the algorithm under specific conditioning of the network links to test the robustness of the algorithm when the network links are modified.