Sufficient control of complex network
This paper serves to further analyze the performance of the suggested algorithm which uses the minimum cost flow problem to control a sufficiently large portion of the network, where only the quantity of controllable nodes matters. Previously, the algorithm has been simulated on complex networks suc...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/158066 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | This paper serves to further analyze the performance of the suggested algorithm which uses the minimum cost flow problem to control a sufficiently large portion of the network, where only the quantity of controllable nodes matters. Previously, the algorithm has been simulated on complex networks such as the scale-free Barabási–Albert (BA) network, the random Erdos-Renyi (ER) network, and various real-life networks which resulted in varying performance of the proposed algorithm. This shows that different types of networks with differing structures and growths may affect the performance of the algorithm. Thus, this paper addresses the performance of the minimum cost flow algorithm in networks with different growth to evaluate the effectiveness of the algorithm. Furthermore, we analyzed the algorithm under specific conditioning of the network links to test the robustness of the algorithm when the network links are modified. |
---|