Converting recurrent neural networks to minimal-state deterministic finite automata for deployment on edge devices
Edge computing for lowlatency internet-of-things (IoT) applications requires more data analysis to occur closer to the data source on edge devices such as micro-controllers, that have limited memory and computational resources. This project’s objective is to outline a generalisable procedure to c...
Saved in:
主要作者: | Hulagadri, Adithya Venkatadri |
---|---|
其他作者: | Gu Mile |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/158314 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Emotion recognition on edge devices: training and deployment
由: Pandelea, Vlad, et al.
出版: (2022) -
Decision-guided weighted automata extraction from recurrent neural networks
由: ZHANG, Xiyue, et al.
出版: (2021) -
Computer Aided Instruction (CAI) on Deterministic and Nondeterministic finite automation for automata theory.
由: Medina, Lizel N.
出版: (1997) -
Synchronous composition of finite interval automata
由: Lin, Liyong, et al.
出版: (2020) -
Quantum-enhanced generalisation advantage for recurrent learners with minimal states
由: Prahara, Aurelio Jethro
出版: (2023)