Convolutional neural networks with dynamic regularization

Regularization is commonly used for alleviating overfitting in machine learning. For convolutional neural networks (CNNs), regularization methods, such as DropBlock and Shake-Shake, have illustrated the improvement in the generalization performance. However, these methods lack a self-adaptive abilit...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Yi, Bian, Zhen-Peng, Hou, Junhui, Chau, Lap-Pui
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/159626
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Regularization is commonly used for alleviating overfitting in machine learning. For convolutional neural networks (CNNs), regularization methods, such as DropBlock and Shake-Shake, have illustrated the improvement in the generalization performance. However, these methods lack a self-adaptive ability throughout training. That is, the regularization strength is fixed to a predefined schedule, and manual adjustments are required to adapt to various network architectures. In this article, we propose a dynamic regularization method for CNNs. Specifically, we model the regularization strength as a function of the training loss. According to the change of the training loss, our method can dynamically adjust the regularization strength in the training procedure, thereby balancing the underfitting and overfitting of CNNs. With dynamic regularization, a large-scale model is automatically regularized by the strong perturbation, and vice versa. Experimental results show that the proposed method can improve the generalization capability on off-the-shelf network architectures and outperform state-of-the-art regularization methods.