Manipulation of self-assembled three-dimensional architecture in reusable acoustofluidic device
Reconstructing of cell architecture plays a vital role in tissue engineering. Recent developments of self-assembling of cells into three-dimensional (3D) matrix pattern using surface acoustic waves have paved a way for a better tissue engineering platform thanks to its unique properties such as natu...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/159963 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Reconstructing of cell architecture plays a vital role in tissue engineering. Recent developments of self-assembling of cells into three-dimensional (3D) matrix pattern using surface acoustic waves have paved a way for a better tissue engineering platform thanks to its unique properties such as nature of noninvasive and noncontact, high biocompatibility, low-power consumption, automation capability, and fast actuation. This article discloses a method to manipulate the orientation and curvature of 3D matrix pattern by redesigning the top wall of microfluidic chamber and the technique to create a 3D longitudinal pattern along preinserted polydimethylsiloxane (PDMS) rods. Experimental results showed a good agreement with model predictions. This research can actively contribute to the development of better organs-on-chips platforms with capability of controlling cell architecture and density. Meanwhile, the 3D longitudinal pattern is suitable for self-assembling of microvasculatures. |
---|