Large-scale Huygens' metasurfaces for holographic 3D near-eye displays
Novel display technologies aim at providing the users with increasingly immersive experiences. In this regard, it is a long-sought dream to generate three-dimensional (3D) scenes with high resolution and continuous depth, which can be overlaid with the real world. Current attempts to do so, howev...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/160186 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Novel display technologies aim at providing the users with increasingly
immersive experiences. In this regard, it is a long-sought dream to generate
three-dimensional (3D) scenes with high resolution and continuous depth, which
can be overlaid with the real world. Current attempts to do so, however, fail
in providing either truly 3D information, or a large viewing area and angle,
strongly limiting the user immersion. Here, we report a proof-of-concept
solution for this problem, and realize a compact holographic 3D near-eye
display with a large exit pupil of 10mm x 8.66mm. The 3D image is generated
from a highly transparent Huygens metasurface hologram with large (>10^8) pixel
count and subwavelength pixels, fabricated via deep-ultraviolet immersion
photolithography on 300 mm glass wafers. We experimentally demonstrate high
quality virtual 3D scenes with ~50k active data points and continuous depth
ranging from 0.5m to 2m, overlaid with the real world and easily viewed by
naked eye. To do so, we introduce a new design method for holographic near-eye
displays that, inherently, is able to provide both parallax and accommodation
cues, fundamentally solving the vergence-accommodation conflict that exists in
current commercial 3D displays. Additionally, the complementary metal oxide semiconductor (CMOS) compatible, industry-grade fabrication technology employed opens new avenues for the large-scale, mass manufacturing of metasurfaces. |
---|