Bioinspired short peptide hydrogel for versatile encapsulation and controlled release of growth factor therapeutics
A short bioinspired octapeptide, GV8, can self-assemble under mild conditions into biodegradable supramolecular physical hydrogels with high storage modulus and good biocompatibility. GV8 hydrogels can encapsulate both single or multiple macromolecular protein-based therapeutics in a simple one-pot...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/160212 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A short bioinspired octapeptide, GV8, can self-assemble under mild conditions into biodegradable supramolecular physical hydrogels with high storage modulus and good biocompatibility. GV8 hydrogels can encapsulate both single or multiple macromolecular protein-based therapeutics in a simple one-pot formulation manner, making it a promising candidate to address challenges faced by existing synthetic polymer or peptide hydrogels with complex gelation and drug-encapsulation processes. Alongside its versatility, the hydrogel exhibits concentration-dependent storage modulus and controlled drug-release action. We demonstrate that GV8 hydrogels loaded with adipose-derived mesenchymal stem cells (ADMSC) secretome remain mechanically robust, and exhibit promising potential for wound healing applications by preserving secretome activity while maintaining a constant supply of ADMSC secretome to promote epithelial cell migration. Overall, our work highlights the potential of GV8 peptide hydrogel as a versatile and safe carrier for encapsulation and delivery of macromolecular therapeutics. |
---|