On the origins of randomization-based feedforward neural networks
This letter identifies original independent works in the domain of randomization-based feedforward neural networks. In the most common approach, only the output layer weights require training while the hidden layer weights and biases are randomly assigned and kept fixed. The output layer weights are...
Saved in:
Main Authors: | Suganthan, Ponnuthurai Nagaratnam, Katuwal, Rakesh |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/160252 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Stacked autoencoder based deep random vector functional link neural network for classification
由: Katuwal, Rakesh, et al.
出版: (2020) -
Random vector functional link neural network based ensemble deep learning
由: Shi, Qiushi, et al.
出版: (2022) -
Ensemble deep random vector functional link neural network for regression
由: Hu, Minghui, et al.
出版: (2023) -
Heterogeneous oblique random forest
由: Katuwal, Rakesh, et al.
出版: (2020) -
An ensemble of decision trees with random vector functional link networks for multi-class classification
由: Katuwal, Rakesh, et al.
出版: (2020)