Cluster-based information fusion for probabilistic risk analysis in complex projects under uncertainty
This paper proposes a hybrid soft computing approach that integrates the Dempster–Shafer (D–S) evidence theory and cluster analysis for probabilistic risk analysis in complex projects under uncertainty. The fusion model tends to solve multi-criteria decision-making problems with a focus on the infor...
Saved in:
Main Authors: | Zhang, Limao, Wang, Ying, Wu, Xianguo |
---|---|
其他作者: | School of Civil and Environmental Engineering |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/160258 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Multi-source information fusion for safety risk assessment in underground tunnels
由: Guo, Kai, et al.
出版: (2022) -
Feature-based evidential reasoning for probabilistic risk analysis and prediction
由: Wang, Ying, et al.
出版: (2022) -
A probabilistic approach to assessing project complexity dynamics under uncertainty
由: Luo, Lan, et al.
出版: (2022) -
Multi-classifier information fusion in risk analysis
由: Pan, Yue, et al.
出版: (2022) -
Probabilistic 3D semantic map fusion based on Bayesian rule
由: Yue, Yufeng, et al.
出版: (2021)