A semi-supervised approach to fault detection and diagnosis for building HVAC systems based on the modified generative adversarial network
Developing efficient fault detection and diagnosis (FDD) techniques for building HVAC systems is important for improving buildings’ reliability and energy efficiency. The existing FDD methods can achieve satisfying results only if there are sufficient labeled training data. However, labelling the da...
Saved in:
Main Authors: | Li, Bingxu, Cheng, Fanyong, Cai, Hui, Zhang, Xin, Cai, Wenjian |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/160416 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Simultaneous-fault diagnosis considering time series with a deep learning transformer architecture for air handling units
由: Wu, Bingjie, et al.
出版: (2022) -
Fault diagnosis and fault-tolerant control in linear drives using the Kalman filter
由: Huang, S., et al.
出版: (2014) -
Fault detection and diagnosis in synchronous motors using hidden Markov model-based semi-nonparametric approach
由: Geramifard, O., et al.
出版: (2014) -
A fault detection and diagnosis scheme for discrete nonlinear system using output probability density estimation
由: Zhang, Y., et al.
出版: (2014) -
Data-driven fault diagnosis of power converter systems
由: Li, Han
出版: (2024)