Data-driven prediction of contract failure of public-private partnership projects

The public-private partnership (PPP) has been adopted by many governments in developing countries to provide better public services. However, PPP projects have a high risk of contract failure. To proactively predict PPP contract failure and obtain the most significant failure factors from a quantita...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Yongqi, Shao, Zhe, Tiong, Robert Lee Kong
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/160451
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:The public-private partnership (PPP) has been adopted by many governments in developing countries to provide better public services. However, PPP projects have a high risk of contract failure. To proactively predict PPP contract failure and obtain the most significant failure factors from a quantitative perspective, this research compared the performance of different combinations of machine learning models and data-balancing techniques. Forty-three project-specific and country-specific factors were examined, and the top 15 were chosen for the transportation, water and sewer, and energy sectors. The results show that the selected model can forecast contract failure with a recall of 75.9%, 73.3%, and 76.2%, respectively. This study showed the effectiveness and applicability of machine learning in predicting PPP contract failure. The results can facilitate decision making by forecasting the probability of PPP contract failure in the early planning stage.