Upcycling end of life solar panels to lithium-ion batteries via a low temperature approach
The massive adoption of renewable energy especially photovoltaic (PVs) panel is expected to create a huge waste stream once it reaches end-of-life (EoL). Despite having the highest embodied energy, present photovoltaic recycling neglected the high purity silicon found in the PV cell. Herein, a scala...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/160911 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The massive adoption of renewable energy especially photovoltaic (PVs) panel is expected to create a huge waste stream once it reaches end-of-life (EoL). Despite having the highest embodied energy, present photovoltaic recycling neglected the high purity silicon found in the PV cell. Herein, a scalable and low energy process was developed to recover pristine silicon from EoL solar panel through a process which avoids energy-intensive high temperature processes. The extracted silicon was upcycled to form lithium-ion battery anodes with performances comparable to as-purchased silicon. The anodes retained 87.5 % capacity after 200 cycles while maintaining high coulombic efficiency (>99 %) at 0.5 Ag -1 charging rate. This simple and scalable process to upcycle EoL-solar panels into high value silicon-based anode can narrow the gap towards net-zero waste economy. |
---|