An incremental construction of deep neuro fuzzy system for continual learning of nonstationary data streams
Existing fuzzy neural networks (FNNs) are mostly developed under a shallow network configuration having lower generalization power than those of deep structures. This article proposes a novel self-organizing deep FNN, namely deep evolving fuzzy neural network (DEVFNN). Fuzzy rules can be automatical...
Saved in:
Main Authors: | Pratama, Mahardhika, Pedrycz, Witold, Webb, Geoffrey I. |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/161032 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Evolving ensemble fuzzy classifier
由: Pratama, Mahardhika, et al.
出版: (2019) -
Gain scheduling: From conventional to neuro-fuzzy
由: Tan, S., et al.
出版: (2014) -
Modeling intermittent drying using an adaptive neuro-fuzzy inference system
由: Jumah, R., et al.
出版: (2014) -
RIT2FIS : a recurrent interval type 2 Fuzzy Inference System and its rule base estimation
由: Samanta, Subhrajit, et al.
出版: (2019) -
A note on the integration of fuzzy systems with neural networks under a TLTT framework
由: Nie, J., et al.
出版: (2014)