Image recovery via transform learning and low-rank modeling: the power of complementary regularizers
Recent works on adaptive sparse and on low-rank signal modeling have demonstrated their usefulness in various image/video processing applications. Patch-based methods exploit local patch sparsity, whereas other works apply low-rankness of grouped patches to exploit image non-local structures. Howeve...
Saved in:
Main Authors: | Wen, Bihan, Li, Yanjun, Bresler, Yoram |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/161037 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Sparse Sequential Generalization of K-means for dictionary training on noisy signals
由: Sahoo, Sujit Kumar, et al.
出版: (2017) -
Image restoration via simultaneous nonlocal self-similarity priors
由: Zha, Zhiyuan, et al.
出版: (2022) -
Image Denoising Via L1 Norm Regularization Over Adaptive Dictionary
由: HUANG XINHAI
出版: (2012) -
Representation recovery via L₁-norm minimization with corrupted data
由: Chai, Woon Huei, et al.
出版: (2022) -
Reconciliation of statistical and spatial sparsity for robust visual classification
由: Cheng, Hao, et al.
出版: (2023)