Implementation of deep learning based power system diagnosis in edge computer
The popularity of the power grid has been around for decades, the insulation in the grid has been gradually aging over time. The broken of insulation layer will increase the risk of its breakdown, which may have a huge impact on the entire power system, resulting in an inestimable economic loss. Par...
محفوظ في:
المؤلف الرئيسي: | Jiang, Guanlin |
---|---|
مؤلفون آخرون: | Zheng Yuanjin |
التنسيق: | Thesis-Master by Coursework |
اللغة: | English |
منشور في: |
Nanyang Technological University
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/161333 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Deep learning for partial-discharge detection in power systems
بواسطة: Song, Fang
منشور في: (2022) -
Sentiment analysis based on deep learning
بواسطة: Jiang, Qi
منشور في: (2021) -
Deep learning for power system time series forecasting
بواسطة: Sun, Weijia
منشور في: (2018) -
ADEPOS : anomaly detection based power saving for predictive maintenance using edge computing
بواسطة: Bose, Sumon Kumar, وآخرون
منشور في: (2019) -
Power converter system fault diagnosis based on AI tech
بواسطة: Wu, Yuzhi
منشور في: (2023)