A mechanically reliable transparent antifogging coating on polymeric lenses

Polymeric lenses have been increasingly used to replace glass lenses due to advantages of light weight, high refractive index, and ease of making into complicated shapes. However, a severe constraint to their wider application lies with their intrinsic weakness in hardness that can lead to mechanica...

全面介紹

Saved in:
書目詳細資料
Main Authors: Sun, Ye, Rawat, Rajdeep Singh, Chen, Zhong
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161524
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Polymeric lenses have been increasingly used to replace glass lenses due to advantages of light weight, high refractive index, and ease of making into complicated shapes. However, a severe constraint to their wider application lies with their intrinsic weakness in hardness that can lead to mechanical damages by abrasion. During service, fogging remains another unsolved challenge to optical lenses, which may significantly reduce the users’ visibility or even cause accident. Therefore, it is imperative to develop mechanically reliable and transparent antifogging coating on polymeric lenses. In this work, a two-step protocol is developed comprising a room-temperature oxygen plasma treatment of polymer substrate followed by antifogging silica thin film deposition using pulsed laser deposition (PLD). The oxygen plasma treatment modifies the surface chemistry to allow a strong adhesion between the polymer substrate and the silica coating. Due to the porous nature of the PLD deposited nanosilica film, the coating also displays an antireflection effect. This mechanically reliable and highly transparent superhydrophilic silica coating opens great opportunity for the eyewear and high precision optics industries.