Wide-sense stationarity and spectral estimation for generalized graph signal
We consider a probabilistic model for graph signal processing (GSP) in a generalized framework where each vertex of a graph is associated with an element from a Hilbert space. We introduce the notion of joint wide-sense stationarity in this generalized GSP (GGSP) framework, which allows us to charac...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/161587 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We consider a probabilistic model for graph signal processing (GSP) in a generalized framework where each vertex of a graph is associated with an element from a Hilbert space. We introduce the notion of joint wide-sense stationarity in this generalized GSP (GGSP) framework, which allows us to characterize a random graph process as a combination of uncorrelated oscillation modes across both the vertex and Hilbert space domains. We also propose a method for joint power spectral density estimation in case of missing features. Experiment results corroborate the effectiveness of our estimation approach. |
---|