Wide-sense stationarity and spectral estimation for generalized graph signal
We consider a probabilistic model for graph signal processing (GSP) in a generalized framework where each vertex of a graph is associated with an element from a Hilbert space. We introduce the notion of joint wide-sense stationarity in this generalized GSP (GGSP) framework, which allows us to charac...
Saved in:
Main Authors: | Jian, Xingchao, Tay, Wee Peng |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/161587 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Wide-sense stationarity in generalized graph signal processing
由: Jian, Xingchao, et al.
出版: (2022) -
Kernel ridge regression for generalized graph signal processing
由: Jian, Xingchao, et al.
出版: (2023) -
A Hilbert space theory of generalized graph signal processing
由: Ji, Feng, et al.
出版: (2021) -
Modeling sparse graph sequences and signals using generalized graphons
由: Ji, Feng, et al.
出版: (2025) -
A compactness criterion for Hilbert space operators
由: Estalilla, Aliento V.
出版: (1988)