Advanced polishing, grinding and finishing processes for various manufacturing applications: a review

This article reviews advanced polishing, grinding and finishing processes for challenging manufacturing applications. The topics covered are machining of advanced alloys; machining of wafers; strengths of dies after machining; grinding and polishing for wafer level packages; hybrid finishing process...

全面介紹

Saved in:
書目詳細資料
主要作者: Zhong, Zhao Wei
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161725
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:This article reviews advanced polishing, grinding and finishing processes for challenging manufacturing applications. The topics covered are machining of advanced alloys; machining of wafers; strengths of dies after machining; grinding and polishing for wafer level packages; hybrid finishing processes; magnetorheological finishing; cooling and lubrication; dental, implant and clinical applications; grinding of metal matrix composites; machining of other brittle materials; fixed abrasive polishing; vibratory finishing; and truing, kinematics and wear of tools. Findings include that a novel three-layered ice-bonded abrasive tool was proposed to polish Ti-6Al-4V. Wafer strengths and corresponding finishing processes are challenging issues for manufacturing of microelectronics devices. The processes could significantly enhance or reduce package strengths. Burrs were minimized to zero after grinding of honeycomb using a novel wheel with small asperities on its grinding surface. Polishing of silicon substrates using a fixed abrasive pad largely shortened the polishing time. Traditionally, grinding required flood coolant, which caused various environmental problems. Recently, more companies demand reduced coolant to respond to environmental requirements. Therefore, minimum quantity of lubrication has become a novel research trend for the benefits of the environment, health and costs. Innovative approaches led to good cooling, smooth surfaces ground with low roughness and low grinding forces.