Structural analyses of the AAA+ ATPase domain of the transcriptional regulator GtrR in the BDSF quorum-sensing system in Burkholderia cenocepacia

Global transcriptional regulator downstream RpfR (GtrR) is a key downstream regulator for quorum-sensing signaling molecule cis-2-dodecenoic acid (BDSF). As a bacterial enhancer-binding protein (bEBP), GtrR is composed of an N-terminal receiver domain, a central ATPases associated with diverse cellu...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan, Xin-Fu, Yang, Chunxi, Wang, Mingfang, Yong, Yonlada, Deng, Yinyue, Gao, Yong-Gui
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/161763
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Global transcriptional regulator downstream RpfR (GtrR) is a key downstream regulator for quorum-sensing signaling molecule cis-2-dodecenoic acid (BDSF). As a bacterial enhancer-binding protein (bEBP), GtrR is composed of an N-terminal receiver domain, a central ATPases associated with diverse cellular activities (AAA+) ATPase σ54 -interaction domain, and a C-terminal helix-turn-helix DNA-binding domain. In this work, we solved its AAA+ ATPase domain in both apo and GTP-bound forms. The structure revealed how GtrR specifically recognizes GTP. In addition, we also revealed that GtrR has moderate GTPase activity in vitro in the absence of its activation signal. Finally, we found the residues K170, D236, R311, and R357 in GtrR that are crucial to its biological function, any single mutation leading to completely abolishing GtrR activity.