Simultaneous-fault diagnosis considering time series with a deep learning transformer architecture for air handling units
An advanced deep learning-based method that employs transformer architecture is proposed to diagnose the simultaneous faults with time-series data. This method can be directly applied to transient data while maintaining the accuracy without a steady-state detector so that the fault can be diagnosed...
محفوظ في:
المؤلفون الرئيسيون: | Wu, Bingjie, Cai, Wenjian, Cheng, Fanyong, Chen, Haoran |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/161886 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
A semi-supervised approach to fault detection and diagnosis for building HVAC systems based on the modified generative adversarial network
بواسطة: Li, Bingxu, وآخرون
منشور في: (2022) -
Data-driven fault diagnosis of power converter systems
بواسطة: Li, Han
منشور في: (2024) -
A learning-based method for speed sensor fault diagnosis of induction motor drive systems
بواسطة: Xia, Yang, وآخرون
منشور في: (2022) -
Fault diagnosis and fault-tolerant control in linear drives using the Kalman filter
بواسطة: Huang, S., وآخرون
منشور في: (2014) -
COMPARING THE EFFECTIVENESS OF MACHINE LEARNING MODELS FOR FAULT DETECTION & DIAGNOSIS OF CHILLERS AND AIR HANDLING UNITS
بواسطة: JUSTIN CHANG WEI HOONG
منشور في: (2022)