Persistent-homology-based machine learning: a survey and a comparative study
A suitable feature representation that can both preserve the data intrinsic information and reduce data complexity and dimensionality is key to the performance of machine learning models. Deeply rooted in algebraic topology, persistent homology (PH) provides a delicate balance between data simplific...
Saved in:
Main Authors: | Pun, Chi Seng, Lee, Si Xian, Xia, Kelin |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/161923 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
A topological approach for protein classification
由: Cang, Zixuan, et al.
出版: (2016) -
PERSISTENT HOMOLOGY: THEORY AND APPLICATION
由: JEREMIAH THOMSON
出版: (2023) -
Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction
由: Liu, Xiang, et al.
出版: (2022) -
Weighted-persistent-homology-based machine learning for RNA flexibility analysis
由: Pun, Chi Seng, et al.
出版: (2021) -
Persistent spectral simplicial complex-based machine learning for chromosomal structural analysis in cellular differentiation
由: Gong, Weikang, et al.
出版: (2023)