Attack-resilient distributed convex optimization of cyber-physical systems against malicious cyber-attacks over random digraphs

This paper addresses a resilient exponential distributed convex optimization problem for a heterogeneous linear multi-agent system under Denial-of-Service (DoS) attacks over random digraphs. The random digraphs are caused by unreliable networks and the DoS attacks, allowed to occur aperiodically, re...

Full description

Saved in:
Bibliographic Details
Main Authors: Feng, Zhi, Hu, Guoqiang
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/162408
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This paper addresses a resilient exponential distributed convex optimization problem for a heterogeneous linear multi-agent system under Denial-of-Service (DoS) attacks over random digraphs. The random digraphs are caused by unreliable networks and the DoS attacks, allowed to occur aperiodically, refer to an interruption of the communication channels carried out by the intelligent adversaries. In contrast to many existing distributed convex optimization works over a perfect communication network, the global optimal solution might not be sought under the adverse influences that result in performance degradations or even failures of optimization algorithms. The aforementioned setting poses certain technical challenges to optimization algorithm design and exponential convergence analysis. In this work, several resilient algorithms are presented such that a team of agents minimizes a sum of local non-quadratic cost functions in a safe and reliable manner with the global exponential convergence. Numerical simulation results are further presented to validate the effectiveness of the proposed distributed approaches.