Banach-Stone Theorem for isometries on spaces of vector-valued differentiable functions

Let Q⊆Rm, K⊆Rn be open sets, p,q∈N, 1≤r<∞ and let E,F be Banach spaces. Denote by C⁎p(Q,E)r the space of all f∈Cp(Q,E) with bounded derivatives of order ≤p, endowed with the norm ‖f‖=sups∈Q⁡‖[(‖∂λf(s)‖E)λ∈Λ]‖r, where ‖⋅‖r denotes the ℓr norm on RΛ, Λ={λ:|λ|≤p}. Let T:C⁎p(Q,E)r→C⁎q(K,F)r be a line...

全面介紹

Saved in:
書目詳細資料
Main Authors: Leung, Denny H., Ng, Hong Wai, Tang, Wee Kee
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/162444
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!