Banach-Stone Theorem for isometries on spaces of vector-valued differentiable functions
Let Q⊆Rm, K⊆Rn be open sets, p,q∈N, 1≤r<∞ and let E,F be Banach spaces. Denote by C⁎p(Q,E)r the space of all f∈Cp(Q,E) with bounded derivatives of order ≤p, endowed with the norm ‖f‖=sups∈Q‖[(‖∂λf(s)‖E)λ∈Λ]‖r, where ‖⋅‖r denotes the ℓr norm on RΛ, Λ={λ:|λ|≤p}. Let T:C⁎p(Q,E)r→C⁎q(K,F)r be a line...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/162444 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |