CAN-PINN: a fast physics-informed neural network based on coupled-automatic-numerical differentiation method
In this study, novel physics-informed neural network (PINN) methods for coupling neighboring support points and their derivative terms which are obtained by automatic differentiation (AD), are proposed to allow efficient training with improved accuracy. The computation of differential operators requ...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/162602 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |