CAN-PINN: a fast physics-informed neural network based on coupled-automatic-numerical differentiation method
In this study, novel physics-informed neural network (PINN) methods for coupling neighboring support points and their derivative terms which are obtained by automatic differentiation (AD), are proposed to allow efficient training with improved accuracy. The computation of differential operators requ...
Saved in:
Main Authors: | , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/162602 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
成為第一個發表評論!